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Decision making in everyday life



Why care about how the brain 
makes decisions?

Importance for human health and well being

Interested in the brain 
and human health? 

NPB 173: 
Neurobiology of 
Brain Disorders

Spring Quarter, 2018 
T-R 9-10:20 (3 units)

CRN - 82755

Brain dysfunction brings about mental and 
neurological disorders. This course examines 

what is known about the underlying 
mechanisms and how neuroscience will 

guide future therapies.
NPB 173 will count as a Neuro Track elective or Extra 

Elective for students under new major requirements or a 
Depth elective for students under old major requirements.



Story of my Dad

High functioning, friendly, successful.

In late 50s, personality started changing 
dramatically. Unfriendly and easily 
agitated. Poor decisions. Lost job. 

At 60, diagnosed with frontal-temporal 
dementia (FTD).

Needed full-time professional care by 
age 63.

Passed away at age 65.

The personal impact of brain disorders



Why focus on neural mechanisms?

Brain Neural circuit Synapse

To find potential targets for clinical 
interventions that can improve 
decision making impairments



???



Experimental approach



Experimental approach

Extended Data Figure 7 | Chemically sharpened fibre optics allow extensive
inhibition during acute and chronic recordings from cortical regions
expressing eNpHR3.0. a, Image of a chemically sharpened 50mm core, 125mm
cladding fibre. b, Light spot produced by a blunt and sharpened fibre 2 cm
above the floor of a cylindrical container 10.5 cm in diameter. c, Laser power
output from a blunt and sharpened fibre as a function of angle relative to the
fibre optic tip. 25 mW input power. Power meter was 2.86 mm from the
fibre tip. d, Single trace of an acute recording of spontaneous activity in
anesthetized primary somatosensory cortex (S1, 1.5 mm posterior, 2.8 mm
lateral from Bregma) expressing eNpHR3.0. Laser illumination period, 500 ms,
marked by the green bar. e, Location of acute recording units (single and multi)

in anaesthetized S1 relative to fibre tip and cortical surface. The level of
inhibition was measured from ten repeated 500 ms laser illumination periods,
delivered every 5 s. Percentage reduction displayed next to partially inhibited
units. Unit in d indicated with an asterisk. f, Example multiunit activity from
the FOF of a rat performing a memory guided orienting task. The 2-s laser
illumination period initiated at cue onset, resulted in 97% inhibition of spiking
activity for both trials where the rat made left or made right responses.
g, Multiunit spiking activity (from f) aligned to laser onset (top) and laser offset
(bottom). Spiking activity is strongly inhibited ,16 ms after laser onset and
recovers ,60 ms after laser offset.
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Rat decision making task

Optimal accumulation of evidence for decision-making in rats
and humans
Bingni W. Brunton1,2,5, Matthew M. Botvinick1,3 & Carlos D. Brody1,2,4

draft last compiled on September 30, 2012
1Princeton Neuroscience Institute
2Department of Molecular Biology
3Department of Psychology
Princeton University, Princeton, NJ 08544, USA
4Howard Hughes Medical Institute
5present address: Dept. of Biology and Dept. of Applied Mathemat-
ics,
University of Washington, Seattle, WA 98195, USA.

Gradual accumulation of evidence is thought to be a funda-
mental component of decision-making1–8. However, its prop-
erties and underlying mechanisms remain unclear. Although
noise in the accumulation is a core feature of most models1, 3, 4, 8,
the properties of this noise have never been isolated and mea-
sured. Here we develop an approach to probe decision-making
that begins with tasks in which sensory evidence is delivered
in pulses whose precisely-controlled timing varies widely within
and across trials. The resulting data are analyzed with models
of evidence accumulation that use the richly detailed informa-
tion of each trial’s pulse timing to distinguish between different
decision mechanisms. The method allowed us to measure, for
the first time, the magnitude of noise in the accumulator’s mem-
ory, separately from noise associated with incoming sensory evi-
dence. Remarkably, we found in both rats and humans that the
accumulator is essentially perfect: its memory is noiseless. In
contrast, the process of adding new sensory evidence is noisy and
is the primary source of variability. Our results put important
constraints on mechanisms underlying accumulation of evidence
for decision-making. More generally, we suggest the combina-
tion of our task design and modeling approach as a powerful
method for revealing the internal properties of decision-making
processes.

Decisions in real life often need to be made based on noisy or
unreliable evidence. Accumulating sensory evidence from a set of
noisy observations made over time makes it possible to average over
different noise samples, thus improving estimates of the underlying
signal. This principle is the basis for the widely influential class of
drift-diffusion models7, 8, first proposed by Ratcliff2 in 1978, which
posit that evidence accumulation is gradual (drift) and noisy (dif-
fusion). These models have been broadly applied to explain a va-
riety of phenomena in biology, from spiking in single neurons9 to
consumer behavior10. Nevertheless, the properties of evidence ac-
cumulation remain under debate4, 11, and key properties of the noise
remain undetermined. Accumulation involves both maintaining a
memory of evidence accrued so far and addition of new evidence to
the memory. Although measures of variance can be powerful indi-
cators of underlying mechanism12, no test to date has distinguished
between noise associated with the accumulator memory itself versus
noise associated with the addition of new sensory evidence.

To quantitatively probe the dynamics of decision-making, we de-
veloped a class of tasks in which subjects are concurrently presented
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Figure 1: Psychophysical tasks and summary of behavior. a, Sequence
of events in each trial of the rat auditory task. Following a center port light
onset, trained rats placed their nose into the port and “fixated” their nose
there for a fixed amount of time until the light was turned off (1-2 sec). Trains
of randomly-timed clicks were played concurrently from left and right free-
field speakers during the last portion of the fixation time. After nose fixation
and sounds ended, the rat made a choice, poking in the left or the right port
to indicate which side played more clicks. Humans performed an analogous
version of the task on a computer while wearing headphones. b, Schematic
diagram of a stimulus in the visual pulses version of the task, performed by
humans on a computer. c, Psychometric curves (fits to a 4-parameter logistic
function for each subject; see methods) for rat subjects. d, Psychometric
curves, as in c, for human subjects. e, Chronometric curves for an example
rat. Difficulty is labeled by the ratio of click rates played on the two sides.
For each difficulty, performance improves with longer stimulus durations.
Dashed lines show the best-fit model predictions for this rat, as described in
the text. The vertical axis shows mean accuracy ±0.95 c.i.
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Brain networks for decision making



Neural responses 
supporting decisions

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

Time from stimulus onset (s)

N
or

m
al

iz
ed

fir
in

g 
ra

te
Sensory evidence

Strong rightward

Weak rightward

None rightward

R
el

at
iv

e 
ne

ur
al

 
re

sp
on

se
 fo

r 
rig

ht
w

ar
d 

ch
oi

ce

Time during the decision (s)



Figure 6. Optogenetic inactivation reveals that dorsal striatal activity causally contributes to decision formation

throughout the accumulation process but not before nor after. (a) Coronal section of the left hemisphere showing

the expression of eYFP-eNpHR3.0 in the left dorsal striatum. Optical fiber localization and 750 mm estimated

inactivation radius are indicated by the red circle. (b) Raster plot (bottom) and peri-stimulus time histogram (top)

Figure 6 continued on next page

Yartsev et al. eLife 2018;7:e34929. DOI: https://doi.org/10.7554/eLife.34929 11 of 24
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Influencing decisions by 
altering brain activity
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Using rats to study 
attentional deficits
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